
ezVis – An Open-Source, Cross-Platform Visualization Tool

Randall Hand, Paul Adams
Engineer Research and Development Center Major Shared Resource Center

Vicksburg, MS
Randall.E.Hand@erdc.usace.army.mil

Paul.Adams @erdc.usace.army.mil

Abstract
The visualization requirements of today’s user
community differ significantly from those of
even 5 years ago. Terabyte data sets are now
produced routinely at the Major Shared Resource
Centers (MSRCs), with petabyte-scale data sets
on the horizon. Users who formerly exported
data sets produced at the MSRC to their local
workstation for visualization now find that larger
data sets exceed the capacity and capability of
their local visualization tools. The majority of
users today are physically remote from more
powerful visualization technology located at the
Scientific Visualization Center (SVC). Although
the SVC can deliver preplanned movies in DVD
format and some ability exists for users to
remotely access SVC resources, mature, well-
developed means do not exist for the user to
remotely access SVC high performance
visualization resources. A potential problem is
that investigative visualization will remain
difficult for users with terabyte and larger data
sets. This is due to several factors including
network bandwidth, latency, and infrastructure at
the researcher’s location. To remedy this
problem, the U.S. Army Engineer Research and
Development Center (ERDC) MSRC SVC is
enhancing the Visualization ToolKit (VTK), an
existing open-source library, to deliver remote
visualization capability. This enhancement
consists of abstracting the calls to the VTK
library to make it easier to program for users.
This package is called ezVis and is part of the
solutionHPC initiative. ezVis has the capability
of reading and writing many different file
formats, such as Ensight Gold, Plot3D, XDMF,
and VTK. ezVis also supports off-screen
rendering, which means that no purchase of
dedicated graphics hardware is needed. The
ezVis package runs on multiple HPC platforms,
so the user does not have to migrate files
between platforms.

Keywords: Scientific Visualization, Scalable
Rendering, Parallel Rendering

1. Introduction

In 2000, the top computer in the world, IBM’s
ASCI White, had a maximal achieved
performance of 2.38 TFLOPS. In 2004, 77
computers were more powerful than ASCI
White, which is now 30 times slower than the
fastest computer [1]. This trend is expected to
continue, with the first PFLOPS machine being
available in 2009. With the ubiquitous
availability of TFLOPS machines, the associated
data are growing at an increasing rate. Terabyte
data sets are now common.

Gaining useful information from the data is a
challenging task. This task often falls to the
researcher or a visualization scientist. Extracting
insight from a multiterabyte data set presents the
researcher with several problems. These
problems include transfer and storage of the data,
graphics hardware to visualize it, as well as
having visualization software capable of
handling the data.

The ERDC MSRC is looking not only at the
problem of visualization but also at the whole
user experience. solutionHPC [2] is an initiative
at the ERDC MSRC to empower the user to
solve problems heretofore that were impossible.
This is accomplished by creating an interface
between the researcher and the machine that is
easier to use for the creation and submission of
jobs (ezHPC), managing of data (ezStor), and
extracting insight from the data (ezVis).

ezViz tackles the visualization problems of the
researcher by providing one of two mechanisms.
The first, which is currently available, is a batch
visualization capability. This batch capability
allows the users to create images from their data
while it still resides on the supercomputer.
These images, which are less than a few

megabytes in size, can then be moved with ease
to the researcher’s workstation. Storage and
network bandwidth are no longer a concern when
visualizing the data. The second mechanism is to
provide a Web interface to visualizing the data.
This mechanism is currently under development.

2. ezVis Design Considerations

Several challenges, some of which are outlined
above, were the driving force behind the design
of ezVis. The first of these challenges is simply
the data itself. This includes managing data
locality (i.e., the transfer and storage of the data).
By leaving the data on the supercomputer, the
researcher does not need to worry, at least for
ezVis, about moving data from one machine to
another. In addition this includes the format of
the data itself. Since a standardized format does
not exist for writing data from simulations run on
the supercomputers, different researchers use
different formats. The desire is for ezVis to be
able to read in a variety of formats.

The second challenge is to have the necessary
software tool to visualize the data. ezVis could
be written from “scratch” to meet this design
point. However, reinventing the wheel was
undesirable. Thus, several commercial off-the-
shelf (COTS) products were examined, including
Ensight [3] and Visualization Toolkit (VTK) [4],
[5]. The difficulty with using a product like
Ensight, which supports batch visualization, is
that the source code is unavailable. This limits
what a researcher can accomplish with the code.
In addition, Ensight is not available on all
platforms. VTK was chosen because it is an
open-source visualization toolkit. Since VTK is
open-source, it can be ported to new machines,
as they become available, and compiled on them.

Another constraint is that most visualization is
performed on machines that have graphics
hardware. Most supercomputers, with the
exception of some from SGI, do not have
graphics hardware available on them. The Mesa
three-dimensional (3-D) graphics library [6],
henceforth called Mesa, is an open-source
graphics library with an application
programming interface (API) that is similar to
OpenGL. Mesa allows for off-screen rendering
by using the central processing unit (CPU). It is
not dependant on any graphics hardware. In
addition, Mesa support is included in VTK.
Mesa implements the latest version of OpenGL,
which is currently Version 1.5. Again, since

Mesa is open-source, it can be ported to new
machines, as they become available, and
compiled on them.

The final design point is for ezVis to be simple
to code. The argument can easily be made that
VTK has all of the ability to meet all the design
points, including this one. VTK’s strength is that
it supports not only the scientific researcher but
also many other groups including the medical
field. This is also a drawback; how is a
researcher not versed in visualization terms to
know which VTK functions are appropriate for
use? ezVis is a higher level abstraction of VTK
that makes the appropriate use of the underlying
VTK structure.

3. Usage

ezViz is designed to be used from C and C++
programs through a simple API consisting of
three major steps:

1. Creating the ezViz scene
2. Configuring the scene for the desired

visualization
3. Calling the required ezViz rendering

function

Depending on the desired complexity of the
scene, this can be completed in as little as five
lines of code. Also, ezViz does not require that
individual scenes be constructed for multiple
renderings. A single scene can be configured
once and passed to several rendering functions to
generate multiple outputs or can be reconfigured
between rendering functions to generate slightly
varying outputs like rotations.

While the intention is for the ezViz code to link
directly into the simulation for run-time
visualization, it can also be used as a separate
process. Writing separate visualization programs
of only a few dozen lines of code and compiling
them separately enables the execution through
various shell or exec functions used by the
simulation. This adds a level of error recovery,
by separating the visualization from the
simulation, such that any errors or crashes in the
visualization will not affect the running
simulation. This capability also allows for post-
processing of data after the simulation has
completed.

3.1. Input

ezViz requires that the input data are written to a
disk, so that it is in a standard and easily
accessible format. Since ezViz is built on top of
VTK, it supports all of the formats that VTK
supports, and a few more added outside of VTK,
as can be seen in Figure 1.

PNG, BMP,
JPG, TIF,
PNM

Classic Image formats

VTK VTK Legacy Format
OBJ WaveFront OBJ Files
PLY Stanford University Format
POLY Side Effects PRISM ASCII

Format
STL Common Stereolithography

Format
G Brigham Young University

Format
CASE, SOS Ensight
DEM Digital Elevation Maps
XYZ Plot3D
UG Unigraphics Facet Format
MHA, MHD UNC MetaImage Format
FACET Facet Files
CUBE Gaussian Cube Files
INP AVS “UCD” Format
VTP, VTU,
VTR, VTS,
VTI

VTK XML Formats

XDMF Extensible Data Model
Format, by ARL

XMDF Extensible Data Model
Format, by ERDC

PDB PDB Molecular Data Files

Figure 1. Supported input formats

Various rendering methods require different
types of input data. Where possible, data
conversion is done automatically; otherwise,
ezViz simply displays a warning message and
fails to generate the desired output.

3.2. Output

ezViz supports two types of outputs, polygonal
models and images.

3.2.1. Polygonal models

Certain rendering techniques (e.g., isosurfacing)
generate or extract geometry that is useful for
other functions, such as third-party rendering
packages. ezViz supports saving the geometry
when using these techniques as shown in
Figure 2.

OBJ WaveFront OBJ – Stores Geometry

Only
VRML Virtual Reality Modeling Language -

Stores Geometry and Color
Information

PLY Stanford University PLY Format –
Stores Geometry and Color
Information

STL Stereolithography Format – Stores
Geometry Only

Figure 2. Supported output polygonal formats

In addition to simply storing these output
formats, ezViz supports a basic set of
postprocessing tools:
• Cleaning – removing duplicate vertices and

edges
• Decimation – Quadric Decimate to reduce the

size and complexity of the mesh
• Triangulation – converting a polygonal mesh

to a triangular mesh (required for
some output formats)

Using the polygonal output mode of ezViz,
cleaning and decimation of surfaces or models
read from other analysis or visualization
packages can be done in a batch mode.

3.2.2. Images

All rendering techniques support generation of
output images with associated contextual
information. Several common formats are
supported including PNG, JPG, TIF, BMP, and
PNM. These images can be generated at
arbitrary sizes, even exceeding OpenGL and
Mesa’s 4096×4096 limitations, and can be titled
and time-stamped. Bounding boxes and color
bars can also be enabled for further information.
All of these functions are user customizable and
can be turned off if desired.

3.3. Visualization techniques

ezViz is capable of visualizing data in several
ways. These include rendering a polygonal data
set (such as a model), extracting a contour or
isosurface, using flow glyphs, or streamlines.

3.2.3. Model rendering

This mode loads a simple polygonal data set
from a disk, such as an isosurface or bounding
surface generated by another program or another
ezViz rendering process. Once loaded, it can
simply be rendered to an image or saved as
another model to a disk. The latter mode is
useful when combined with the Cleaning and
Decimation tools to reduce the complexity of
models.

3.2.4. Contour extraction

This technique works with volume data sets and
extracts isocontours or isosurfaces. The
resulting isosurfaces can be colored by any
additional field and then saved as an image or a
model. The coloring operation can be mapped to
an additional scalar or any component or
magnitude of a vector field. If the input data set
uses cell data instead of point data, then the data
will automatically be converted into the
appropriate format.

3.2.5. Flow glyphs

In this technique, a volume data set is loaded and
one of many simple models, ranging from a
three-dimensional arrow to a simple vertex point,
is placed at each data point. The resulting
complexity can be overwhelming to many
systems, so a masking function is in place to
allow a statistically random or uniform scattering
of points to be used in place of the entire data
set. The models can be oriented to a vector field,
or left unoriented, and can be scaled by a scalar
field in the data set. They can also be colored by
any other field or the resulting vector magnitude
or scaling factor, and then written to a disk as an
image or model.

3.2.6. Streamlines

This technique uses a volume data set and shows
streamlines passing through a specified point.
More than one streamline can be generated at a
time using the spherical or line sources. The
resulting lines can be colored by additional fields
in the data set or by several parameters resulting
from the streamlines calculation (normals,
rotation, vorticity, etc.) Several parameters exist
to control the types of calculations used for the
placement of the streamline and how it will
terminate. The result of a streamline rendering
can only be saved as an image.

3.2.7. Volume rendering

This technique takes a volume data set and then
generates a volume rendering using ray-casting
techniques. One is able to map opacity and color
to separate values or to the same value. The
result can only be saved as an image.

4. Case Studies
4.1.Volume-rendered backhoe

Using a VTK Legacy data set of a synthetic
aperture radar image of a backhoe, a volume-
rendered image was extracted. The data set is
1024×1024×1024 unsigned chars, and the
resulting image is 1280×960. Sixteen processors
were used to ray cast the scene in parallel. The
relevant code can be seen in Figure 3. The
image, which can be seen in Figure 4, took 13.3
minutes to generate on an Onyx 340 with 600-
MHz MIPS processors.

The same data set was processed again, but the
resulting image was 6400×3600. This requires
tiling of the image, as it exceeds the 4K limit in
OpenGL. Sixteen processors were used to ray
cast in parallel, and 360 images were generated
from various angles to create a full rotation.
Each frame took an average of 30 minutes, with
the entire process taking approximately 6.5 days.

4.2. Isosurface of breaking waves

The 600-time-step Breaking Waves data set is a
512×128×128 grid containing a scalar (Fraction
of water in a given cell) and a vector (Velocity)
at every point. All 600 frames were processed

through ezViz to extract an isosurface from the
Fraction field and color map it by Velocity
magnitude. All results were written to a disk as
800×600 PNG images. The relevant portion of
the code can be see in Figure 5. One of the
resulting images can be seen in Figure 6. The
ezViz program was wrapped in a shell script to
process multiple files simultaneously. Twenty-
four frames were processed at a time, each frame
taking approximately 15 to 20 seconds. The
entire process took approximately 7.5 minutes.

The same data set was processed again, but
written as 6400×3600 PNG images. This
requires tiling of the image, as it exceeds the 4K
limit in OpenGL. The resulting images took
~2:5 minutes each, and the entire process took
approximately an hour.

4.3. Polygonal models

The dragon data set consists of 871,414 triangles
in Stanford University’s PLY format, creating a
small Chinese dragon. Using ezViz, this data set
was loaded and rendered as an 800×800 PNG
image, in 23 seconds. This image can be seen in
Figure 7.

The same data set was loaded again and post-
processed. It was cleaned and decimated down
to 27,076 triangles and saved as a PLY. This
took 39 seconds, and the source can be seen in
Figure 8. The resulting PLY file was then
rendered into a 800×800 PNG image, which took
5.21 seconds and can be seen in Figure 9.

5. Conclusions

ezVis is one portion of a larger program called
solutionHPC, to enable high performance
computing users to easily generate and
understand their data. By basing ezVis on open-
source visualization code, cross-platform
migration is achieved. HPC users can either
integrate ezVis into their own code or run it
separately. ezVis is currently undergoing testing
with a select group of users at the ERDC MSRC.

6. References

[1]. Top 500 [online] http://www.top500.org .

[2]. Swillie, S. “solutionHPC on the Way,” Resource, ERDC
MSRC, Fall 2004.

[3]. Computational Engineering International, Inc., “Ensight
User Manual for Version 8.0,” North Carolina, USA, 2005.

[4]. Shroder, B., Martin, K., Lorenson, B. The Visualization
Toolkit, An Object-Oriented Approach To 3D Graphics, 3rd
edition. 2003.
[5]. Kitware The Visualization Toolkit User's Guide. 2001.

[6]. Mesa, [online] http://www.mesa3d.org .

Figure 3. Source for the backhoe volume
rendering

// 1-time setup
scene = ezVizInitialize();
strcpy(scene->input_filename, argv[1]);
scene->output_height = 3600;
scene->output_width = 6400;
scene->showTitle = 0;
scene->showTimeStamp = 0;

scene->enableColorMap = 1;
scene->showColorBar = 1;
sprintf(scene->colorField, "volume_scalars");
scene->colorBarOrientation = ezViz_OrientHorizontal;
scene->colorBarLocation = ezViz_SideBottom;
scene->colorFieldComponent = ezViz_RangeX;
scene->boundingBox = 0;

scene->Elevation = -75;
scene->Pitch = 1;
scene->Zoom = 5;

// Build the colormap, since the default uses full opacity at all values
ezViz_AddColorMapEntryRGB(scene, 0.0, 0,0,0,0.00);
ezViz_AddColorMapEntryRGB(scene, 36.5, 0,0,1,0.16);
ezViz_AddColorMapEntryRGB(scene, 73.0, 0,1,1,0.33);
ezViz_AddColorMapEntryRGB(scene,109.5, 0,1,0,0.50);
ezViz_AddColorMapEntryRGB(scene,146.0, 1,1,0,0.66);
ezViz_AddColorMapEntryRGB(scene,182.5, 1,0,0,0.83);
ezViz_AddColorMapEntryRGB(scene,219.0, 1,0,1,1.00);
ezViz_AddColorMapEntryRGB(scene,255.0, 1,1,1,1.00);

ezVizSetNumberOfThreads(24);
for(scene->Roll = 0; scene->Roll < 360; scene->Roll++) {
 sprintf(scene->output_filename, “frame%04i.png”, scene->Roll);
 ezVizRenderVolume(scene);
}

http://www.top500.org/
http://www.mesa3d.org/

Figure 4. Small backhoe volume rendering

Figure 7. Dragon

Figure 8. Source for the decimated dragon

// 1-time setup
scene = ezVizInitialize();
scene->input_format = ezVizFile_AUTO;
scene->output_format = ezVizOutput_PLY;
scene->show_Statistics = 1;

scene->enableColorMap= 0;
scene->modelDecimate = 1;
scene->modelClean = 1;
scene->decimate_Subdivisions = 50;

// every time setup
for(i=1; i<argc; i++) {
 strcpy(scene->input_filename, argv[i]);
 sprintf(scene->output_filename, "%s.png", rgv[i]);
 strcpy(scene->title, argv[i]);
 ezVizRenderModel(scene);
}

// 1-time setup
scene = ezVizInitialize();
scene->output_height = 600;
scene->output_width = 800;
scene->contourIsoValue = 0.5;
sprintf(scene->contourFieldName, "Fraction");

scene->enableColorMap = 1;
sprintf(scene->colorField, "Velocity");
scene->colorBarOrientation = ezViz_OrientHorizontal;
scene->colorBarLocation = ezViz_SideBottom;
scene->colorFieldComponent = ezViz_RangeVectorMagnitude;
scene->show_Statistics = 0;

scene->autoStretchColorMap = 0;
ezViz_AddColorMapEntryHSV(scene, 0, 0.6667, 1, 1);
ezViz_AddColorMapEntryHSV(scene, 1.5, 0.3333, 1, 1);
ezViz_AddColorMapEntryHSV(scene, 3, 0, 1, 1);
scene->Zoom = 1.5;

// every time setup
for(i=1; i<argc; i++) {
 strcpy(scene->input_filename, argv[i]);
 sprintf(scene->output_filename, "%s-iso.png", argv[i]);
 ezVizRenderContour(scene);
}

Figure 5. Source for the breaking waves
isosurface

Figure 6. Small breaking waves frame

Figure 9. Dragon, decimated

	Introduction
	ezVis Design Considerations
	Usage
	Creating the ezViz scene
	Configuring the scene for the desired visualization
	Calling the required ezViz rendering function
	3.1. Input
	Output
	Polygonal models
	Images

	3.3. Visualization techniques
	Model rendering
	Contour extraction
	Flow glyphs
	Streamlines
	Volume rendering

	Case Studies
	Volume-rendered backhoe
	Isosurface of breaking waves
	Polygonal models

	Conclusions
	References

